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One (Cell) in a Million

Imagine that you have a bag of candy. Every once in a while,
you grab a few pieces and eat them without thinking too
much about it. They taste good, maybe vaguely like straw-
berries. You think the candy might be a pale pink. Now,
you grab another handful. This time, you take a closer look
and are surprised to find out that most of them are white
and sweet, though unflavored—and all of the strawberry
taste comes from a few rare bright pink candies.
Averaging across populations can give a great idea of that

population’s central tendencies, though it can mask impor-
tant differences among the individuals within that population,
and it tells you nothing about the organization or behavior
within any particular individual. It’s a pretty simple concept
when applied to a dozen pieces of candy, but it’s much
more complex when thousands or even millions of cells are
involved. Yet the capacity to interrogate biological phe-
nomena on a single-cell level is increasingly feasible and
has already changed our understanding of cellular function
and differentiation—not tomention challenging the prevailing
notions of several established cell types.
Image from iStock/ZHARATE.
The most popular way to examine single cells has so
far been to quantify RNA in real time as cells transcribe it.
RNA sequencing (RNA-seq) has been the closest thing to
an industry standard in this still-emerging field (Tang et al.,
2010), but its drawbacks include low throughput and
massive, high-dimensional datasets that can be hard to inter-
pret. Some recently described microfluidic devices have
helped to overcome the throughput difficulty. For example,
the groups of J. Christopher Love and Alex Shalek developed
the Seq-Well platform, comprised of wells with sub-nanoliter
volumes and semipermeable membranes, to better capture
and analyze hundreds of cells at the same time with single-
cell resolution (Gierahn et al., 2017). Another approach to
increase throughput, CROP-seq, uses pooled CRISPR-
based screens to insert unique tags into each cell’s genome
followed by RNA-seq to track how those edited genes were
transcribed (Datlinger et al., 2017). This strategy effectively
combines the old bulk method of investigating entire pools
of cells at the same time with the new paradigm of under-
standing what each of those cells is doing.
Alternatively, instead of improving RNA sequencing, some

researchers have sought to use visual methods to image and
quantify RNA in situ. These image-based approaches, mostly
based on the well-known fluorescence in situ hybridization
(FISH) technique, have the additional advantage of being
able to track where in the cell the transcription is happening.
While the information generated by these techniques can be
easier to understand and offer unique spatial insight, they
share some difficulties with methods based on RNA-seq,
especially low throughput. One reported extension of FISH,
termed MERFISH, alters the underlying chemistry of the
FISH technique and expands the number of relevant fluores-
cent wavelengths. This technique can profile more than
100,000 human single cells in less than a day, a 100-fold in-
crease in throughput over previously described methods
(Moffitt et al., 2016). A unique challenge of optical systems
compared with sequencing-based systems is the inability
to study opaque or physically inaccessible cells. However,
recent work from Long Cai’s group described a system
called MEMOIR, where these obscured cells record lineage
information with molecular ‘‘scratchpads,’’ which can later
be read and interpreted with FISH (Frieda et al., 2017).
MEMOIR was demonstrated to reconstruct the lineage of
different cells that proliferated from the same pool of mouse
embryonic stem cells.
While the field is still a long way from applying personalized

single-cell omics to precision medicine, it has already pro-
duced some new fundamental insights into how cells
behave. A recent study from Sarah Teichmann’s group
(Lönnberg et al., 2017) explored the bifurcation between
commitments to different T cell lineages during infection
with Plasmodium (the causative agent of malaria) by
sequencing RNA transcribed in single naive T cells. One crit-
ical finding is that T cell lineages are not mutually exclusive
within a given T cell population; instead, multiple T cell
subtypes can exist in the same population if single naive
cells are exposed to different differentiation factors. And an
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ambitious project from the Science for Life laboratory in
Sweden combined RNA-seq with immunofluorescence to
update the Human Protein Atlas with a 3D spatial distribution
of where proteins localize in human cells (Thul et al., 2017).
These methods and technologies may help us understand

some of the most intractable problems in biology: Why do
some cells mutate to become cancerous?; What explains
the (seemingly stochastic) rise of bacterial ‘‘persister’’ cells
in response to antibiotic treatment?; And are there any
undiscovered cell types lurking within us? Each starts with
a single cell.
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